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The stability of a pair of counter-rotating vortices to three-dimensional disturbances 
in the presence of a stretching flow is studied for vortices of small circular cross- 
section. The problem is reduced to a system of two first-order, linear ordinary 
differential equations, which can be integrated numerically to obtain the change in 
the perturbation of the vortex pair with time. The stability of the vortex pair 
depends upon four dimensionless constants, two of which characterize the stretching 
flow. Computations indicate that stretching usually exerts a stabilizing influence on 
the vortex pair, although in many cases the perturbation amplitude may initially 
increase and then decrease a t  some later time due to  the effects of stretching. The 
results of the study are applied to investigate stability of hairpin vortices that are 
typically observed in turbulent shear flows. An estimate of the percentage increase 
in perturbation amplitude of a hairpin vortex in a homogeneous turbulent shear flow 
is given as a function of the stretch of the hairpin for different values of the 
dimensionless perturbation wavenumber and the microscale Reynolds number 
Re, = hq/v (based on the Taylor microscale h and the turbulent kinetic energy hz). 
The maximum percentage growth of a perturbation of the legs of a hairpin vortex 
in a turbulent shear flow is found to decrease with increase in Re,. 

1. Introduction 
A well-known paper by Crow (1970) shows that a pair of parallel counter-rotating 

vortices may become unstable to small three-dimensional disturbances under certain 
circumstances, whereas a single vortex in an otherwise stationary and unbounded 
domain is marginally stable to small disturbances (in the absence of axial flow). In 
the same paper, Crow introduced an approximate method for calculation of the 
motion of vortex filaments in which the ‘external’ flow is obtained using the 
Biot-Savart integral (with a ‘cutoff’ to remove the singularity in this integral for 
points on a vortex filament), and then assumes that the vortices are convected with 
the external flow field. Moore (1972) utilized a similar cutoff procedure (due to 
Rosenhead, 1930) to numerically compute the unstable vortex motion when the 
wave amplitude is not small, and these computations indicate that Crow’s results (for 
small perturbations) hold remarkably well nearly up to the point at which the two 
vortices touch. Crow’s problem was further extended by Robinson & Saffman (1982), 
who consider the three-dimensional linear stability of various vortex arrays, 
including a single row of vortices, a KarmAn vortex street and a symmetric double 
row of vortices. 

The effect of axial flow within the vortex cores on three-dimensional stability of a 
vortex pair was considered by Moore & Saffman (1972) and Widnall & Bliss (1971). 
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In this case, the simple assumption that a vortex is convected with the ‘exterior ’ flow 
is not sufficient because of the effect of centrifugal forces caused by the axial flow in 
a curved vortex core. A new model for computation of vortex motion was introduced 
in these two papers, in which each element of the vortex core is endowed with some 
momentum and the rate of change of momentum of a vortex element is equated to 
the sum of external forces acting on the core lateral surface and internal contact 
forces. The external forces are related to Kutta-Joukowski lift and inertial drag 
(added mass and buoyancy forces) when the core radius is uniform along the axis. 
The external flow field is used in determining external forces on the core and is again 
calculated using the Biot-Savart integral with a cutoff. This approach for calculating 
vortex motion was extended by Lundgren & Ashurst (1989) and Marshall (1991) to 
study problems with variable core area. The latter study utilized a ‘directed curve’ 
model to represent the vortex core (which is found to be a useful approach for 
modelling nonlinear variations in core area) ; however, the final equations can be 
reduced in appropriate limits to those of the previously cited vortex theories. 

Many cases involving vortex pairs in nature do not involve vortices that are 
immersed in an otherwise quiescent medium (as assumed in the previously cited 
articles on the Crow instability), but instead involve vortices which are subject to 
stretching along their axes. A notable example of this observation is the hairpin 
vortices found in turbulent shear flows, which are believed to exert a strong influence 
on Reynolds stress and turbulence production rates. Other vortices found in 
turbulent flows, such as streamwise or transverse vortices, may also undergo 
stretching when the mean velocity has a non-zero gradient. Examples of vortex pairs 
undergoing stretching are also plentiful for larger-scale vortices, as exemplified by an 
oceanic vortex pair travelling from shallow to deep water or by airfoil trailing 
vortices in the near wake of an aircraft. 

The present paper is composed of two parts. The first part ($2) addresses the 
problem of the three-dimensional linear stability of a counter-rotating vortex pair in 
a stretching flow. The problem is reduced to a system of first-order ordinary 
differential equations, which are then solved numerically to determine the change in 
perturbation amplitude with time. In the second part (§3), the results of $2 are 
applied to study the instability of hairpin vortices typical of those observed in 
turbulent shear flows. An argument is made in this section that the instability and 
subsequent break-up of hairpin vortices (a t  least in homogeneous shear flows) is due 
to the Crow instability between the hairpin legs. An estimate of the amplitude of 
perturbations along the hairpin legs is obtained as a function of the stretch of the 
hairpin vortex for different values of the microscale Reynolds number Re,, in a 
homogeneous turbulent shear flow. The conclusions of the study are summarized 
in $4. 

2. Stability analysis 
We consider the stability of two parallel, infinitely long vortices in a stretching 

flow. The vortices are labelled vortex 1 and vortex 2, as shown in figure 1, and have 
axes C ,  and C,  and circulations & = -ro and & = 4. The separation distance 
between the vortices in the unperturbed flow is b( t )  and the vortex core radius is cro(t). 
Throughout this section, it is assumed that the flow is inviscid and incompressible 
and that the ratio uo/b is very small compared to unity. 

To calculate the vortex motion in a perturbed state, it is assumed that every point 
on each vortex at every time t is convected both by the induced velocity, which arises 
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FIGURE 1. Sketch of a counter-rotating vortex pair with axes initially aligned in the z-direction. 
The separation distance between the unperturbed vortices is b and the circulation of the vortices 
is *G. 

from the vortex itself and from the other vortex of the pair, and by some other 
prescribed velocity due to the stretching flow. Let rN(EN, t) denote the position vector 
from a fixed coordinate frame to a point on the axis C ,  of vortex N ,  where EN is a 
convected coordinate which measures arclength along CN in some reference state. 
The velocity uN((N, t )  of vortex N is defined by 

- drN UN - - 
dt ’ 

where dldt denotes the material derivative, or the derivative with respect to time 
keeping 5, fixed. If uN(gN,t) denotes the sum of the self-induced velocity and the 
velocity induced by the opposing vortex and w N ( t N ,  t)  denotes some other prescribed 
flow, then the vortex motion is obtained from the equation 

V N  = U N +  W N ,  (2) 

where uN is given by the Biot-Savart integral as 

A prime in (3) denotes a dummy variable of integration. Also, [S,] placed under the 
integral sign implies that a segment of length S, g([,, t )  will be cut out of the domain 
of integration each side of EN when M = N ,  where following Crow (1970) and 
assuming uniform vorticity in the core, we take 

8, = iexp (f) z 0.6420. (4) 
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Note that the approximate system of equations (2)-(3) is the same as that used by 
Crow (1970) and a number of other workers, and (2) can be derived from more general 
equations governing vortex motion (see Moore & Saffman 1972 or Marshall 1991) as 
a leading-order approximation for small values of the ratio e / b .  

Since the vortex axes are initially aligned in the z-direction, then 

r N ( t N ,  t )  - r,(i&, t )  = (t, - L) e z  + b( 1 - div,) e y  + P N ( S N ~  t)  -PM(CM* t ) ,  ( 5 )  

where dN, is the Kronecker delta and p ,  is the perturbation of vortex M .  We now 
identify t = 0 as the reference state in which tN measures arclength on C,, and 
further let the perturbation of vortex N be initialized at t = 0 and be given by 

(6) 

In  (6), x N ,  yN and z N  are functions of 6, and t. 
The velocities v N ,  uN and wN in (2) are each composed of the sum of a part present 

in the unperturbed flow (denoted by a capital letter) and a perturbed part (denoted 
by a lower-case letter) and are written in component form as 

P N ( ~ N ,  t )  = X N  e, + Y N  e y  + Z N  e,. 

V N  = ( 2 ) N i  + Y V i )  e i ,  U N i  = ( U N i  + U N i )  e i ,  WAF = ( W N i  + W N , )  e i ,  (7) 

where e, are Cartesian base vectors and summation over repeated tensor indices, 
having the values i = (1 ,2 ,3 ) ,  is implied. The unperturbed flow at  t = 0 is given by 

and the prescribed perturbation velocity components wNi (due to the stretching flow) 
are 

w N 1  = c1 xN, w N 2  = C:!yN, w N 3  = c3 z N .  (9) 

C,+C,+C, = 0. (10) 

In (8) and (9) ,  c3 is the stretching rate and to satisfy continuity we must have 

The vortex core radius c is composed of the sum of a part co(t) in the unperturbed 
flow and a perturbed part cp( tN, t ) .  To be consistent with (8), we let uo and b vary 
with time as 

(11) 

where cI and b,  are constant initial values. The perturbation part of vN in (7) is 
related to the perturbation displacement vector p N  in (6) by 

e,(t) = crI exp ( -+c3 t ) ,  b(t) = b, exp (c, t ) ,  

d P N i  
O N i  = - 

dt ' 

We consider only perturbations with small amplitude and small slope, or with 

We restrict attention to the case in which fluid particles on the vortex axis are 
perturbed only in the (x, y)-plane, so we set zN = 0 and note that the linearized axial 
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component of ( 2 )  reduces to  an identity in this case. The linearized equations for xN 
and y N  are obtained from ( 2 ) ,  (9) and (12) as 

where xN and y N  are functions of time t and the coordinate z in the e, direction (which 
should not bc confused with the axial perturbation zN of the vortex). Note that the 
perturbation crp in core radius does not enter into the linearized equations for xN and 
Y N .  

A solution of the linear integro-differential system (3)  and (15) is assumed to exist 
of the form 

, y N  = i N ( t )  eizk(t), (16) - p ( t ) e i z W )  
x N -  N 

where the wavenumber k of the perturbation is some function of time whose form is 
to  be determined. For solutions of the form (16), it was shown by Crow (1970) that 
the Biot-Savart integral (3) can be reduced to 

(17) I u11 = ( r , / 2 x b 2 )  [ -Y1 + X(kb) Y 2  + (kb)'w(S, La,) Y l l ,  

UZl = ( r , /2Xb2)  [Yz- X W )  Y1- (kb)2w(4!  kc,) Y21, 

u12 = (&/27cb2) [ -xl + $(kb)  5,- (kb)'w(S, k a , )  XI], 

u,, = (&/27cb2) [x, - $(kb)  x1 + (kb)'w(S, kco)  x,]. 

The first index attached to u in (17) designates the vortex number N and the second 
index is the component number i. The functions xN and y N  in (17) are again functions 
of both z and t, and the expressions (17) will only be valid when a solution for xN and 
yN can be found of the form (16). Defining 6 = 6, kcr, and P = kb, the ' self-induction' 
function w ( 6 )  and 'mutual-induction' functions x(P) and $(P) are defined in terms of 
the modified Bessel functions of the second kind, K ,  and K , ,  and the cosine integral, 
Ci (a), as 

(18) 
w ( 6 )  = ~[cos(6)-1]/S2+sin (6)/S-Ci(6)}, 

Dimensionless normal modes, designated as 'symmetric ' and ' antisymmetric ', are 

I +(P) = P"K,(P) +PKl(P), x(P) = PKl(P). 

defined by 

A dimensionless time 7 and dimensionless axial distance 5 are defined by 

7 = (T,/b?) t, 5 = (b ,  c,/r,) z. ( 2 0 )  

Various other dimensionless parameters e ,  Fl, F,, G, and G, are also introduced as 
follows : 
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Using (14)-( 15) and (17)-(21), the dimensionless perturbation equations for the 
two normal modes become 

a7 

where 

It is noted that since uo, b, k all depend on time, then 6, /3 and consequently F,, Fz, 
G, and G ,  also depend on time. Equations (22a, b )  can be solved using the method 
of characteristics. The characteristic lines g = c(7) are given by 

g = CoeflT1 (23) 

where 5, is an initial position of the characteristic at r = 0. Using (23), equations 
(22a, b)  for x, and xA then reduce to the ordinary differential equations 

The solution to  (24) for x, will be of the form 

and similarly for xA. The coefficients B, and B, are arbitrary functions o f f ,  whose 
form is determined by initial conditions a t  7 = 0. If we choose initial conditions such 
that 

where B, is independent of [,, (with similar forms for B, and the coefficients of xA), 
then using (23) it follows that the solutions for xN and yN are of the form (16), with 
the wavenumber k( t )  given in terms of dimensional variablcs by 

Bl(C0) = 4 exp G C O L  (26) 

k(t)  = koexp ( - c 3 t ) .  (27 ) 

From (11) and (17), the parameters p and 6 are found to vary with dimensionless 

(28) 

Substituting (28) into (18) to calculate w(S) ,  +(p) and ~ ( p ) ,  we can determine the 
variation of A, and A, with 7 from (21) and (22c). For any initial condition of the 
form (25)-(26), the problem reduces to solution of (24) for known A, and A,, which 
can be obtained numerically using any standard forward-marching method. Solution 
of these equations depends upon the four dimensionless constants E ,  So, Po and c1/c3. 
One might imagine, therefore, that the stability domain for the vortex pair can be 
represented as a region in the four-dimensional space of these parameters. I n  
practice, however, determination of a discrete stability domain of this type is difficult 
because many instances have been found in which the perturbation amplitude 
initially increases and then decreases at a later time and eventually approaches zero. 
In some such cases (which might be considered unstable), the perturbation amplitude 
may reach a value of order unity before the maximum is reached, a t  which point the 
linearized analysis would no longer be valid and touching of the opposing vortices 

time 7 as 
S ( T )  = So exp ( -+7), p(7) = Po exp [ - (1  - c , / c 3 )  €71. 
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FIGURE 2. Sample calculations showing the change in perturbation amplitude ratio A with 
dimensionless time T in the symmetric mode for values of stretching parameter E of 0 (-), 0.1 
(---- ), 0.2 (-..-..-..- ) and 0.5 (--.-.- ). (u, b )  6, = 0.2 and Po = 4 (which is stable for 
E = 0); (c, d )  6, = 0.3 and Po = 1 (which is unstable for E = 0). The ratio cl/c3 is 0 in (u, c) and -4  
in (b ,  d) .  

may well occur. In other such cases (which might be considered stable), the 
maximum perturbation amplitude is well within the range of the linear theory and 
we find that no touching of the opposing vortices can occur. 

Equations (24) are solved numerically using the fourth-order Runge-Kutta 
method for various values of the constants E ,  c1/c3, 8, and Po, and the results of some 
of these calculations are shown for the symmetric mode in figure 2 ( a 4 )  and for the 
antisymmetric mode in figure 3 ( a 4 ) .  In  these figures, the 'amplitude ratio' A is 
plotted against dimensionless time 7 ,  where A is defined for the symmetric mode by 

A = [x: (7)  + Y:('T)lt/[x:(O) + Y:(O) l t ,  (29) 

and similarly for the antisymmetric mode. The value of A(7) thus represents the ratio 
of the perturbation amplitude at time 7 to the initial perturbation amplitude at 
7 = 0. For all curves in figures 2 and 3,  we set x,(O) = y,(O) or x A ( 0 )  = y A ( 0 ) ,  although 
the results did not qualitatively differ for other choices of the initial values. 

Figures 2 ( a )  and 3 (a)  show the effect of the stretching parameter E on flows which 
are steady in the absence of stretching (for which E = 0) with cJc, = 0. The E = 0 
results for A oscillate with 7 a t  a constant amplitude, and the results for E > 0 also 
exhibit values of A near unity which approach some constant value as 7 +  00. The 
cases in figures 2 (a )  and 3 (a)  are shown again in figures 2 ( b )  and 3 ( b ) ,  respectively, 
but now with c1/c3 = cJc3 = -+. In all cases for which E > 0, the amplitude ratio 
either decays immediately to zero, or else attains some maximum value a t  a finite 7 
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FIGURE 3. Similar calculations to  those in figure 2, but  for the antisymmetric mode. (a ,  b )  8, = 0.5 
and Po = 2 (which is stable for E = 0); (c, d )  8, = 0.5 and Po = 1 (which is unstable for E = 0). Values 
of E for the different type lines in (u-d) are the same as in figure 2 ( a 4 ) .  The ratio CJC, is 0 in (a ,  c) 
and -4  in (b ,  d) .  

and then decays to zero. In some of these cases, however, the maximum value of A 
is fairly large (e.g. A,,, x 2.7 for c = 0.1 in figure 2 b ) .  I n  figures 2 (c) and 3 (c), cases 
are shown for cJc3 = 0 which are unstable in the absence of stretching. Although for 
e = 0, A -+ co as r -+ co in the linearized analysis. It is found that for e > 0, A always 
approaches some finite asymptotic value as r+ 00. This asymptotic value of A 
depends on c and may be quite large for small e. The cases shown in figures 2 (c) and 
3 (c) are shown again in figures 2 (d )  and 3 (d ) ,  respectively, but now with CJC, = -i. 
We find again that the values of A either reach a maximum at some finite r and then 
decrease to zero or else A decreases to zero immediately. 

The results clearly indicate that vortex stretching exerts a strong stabilizing 
influence on the vortex pair instability. In  fact, it can be shown from (22c) and (24) 
that the amplitude ratio A is always bounded as r -+ co for any e > 0 and cJc3 in the 
interval - 1 < cl/c3 < 0. This is not to  say, however, that A may not become quite 
large a t  particular values of 7 for certain e > 0, such that depending on the initial 
perturbation amplitude, the assumption (13) of small perturbations might be 
violated. It is found in all computations that A approaches some constant value as 
r-+ co for cJc3 = 0 or - 1 ,  but that for 0 > c1/c3 > - 1 ,  the value of A decreases to 
zero as r + co (sometimes preceded by a local maximum of A ) .  We see from (24a) that 
dx,/dt may equal zero for non-zero x, only when det (A,) vanishes, and similarly for 
the antisymmetric mode in (24b). For the symmetric mode, the determinant of A, 
vanishes for any r such that /3 and 6, determined from (28), satisfy the equation 
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For cJc3 = 0 or - 1, the right-hand side of (30) is zero. Since Fl+ 1/7c and F2+0 as 
T +  00 from (18), (21) and (28), then (30) is always satisfied a t  infinite time, although 
it  may be satisfied a t  other finite times as well. 

The long-time behaviour of the perturbations can be obtained from (24) in the 
limit as T +  co, which yields the system of equations 

s- dx - €CXs+-y,, - dys - - -€(l +qy, ,  
dt 7K dt 

where F = cJc3 lies in the interval - 1 < F < 0. For cnot  equal to either - 1 or 0, the 
solution of (31) gives x, and y, decreasing exponentially in time to zero. For either 
c = 0 or - 1, it is found that x, and y, approach constants as 7 + co . The equations 
for the perturbations xA and yA become identical to  (31) as ~ + c o ,  so the above 
conclusions hold for the antisymmetric mode as well. 

3. Stability of hairpin vortices in turbulent shear flows 
Hairpin vortices are known to be a dominant feature of many turbulent shear 

flows. The role and characteristics of these structures in turbulent flow is especially 
well documented by recent direct numerical simulations of turbulent channel flow 
and homogeneous shear flow (see Moin & Kim 1985, and Rogers & Moin 1987, who 
also cite previous experimental work). A primary observed feature of turbulent 
hairpin vortices is that  they align themselves at some nearly constant angle t o  the 
mean flow direction (often around 45') and allow themselves to be stretched by the 
mean flow. The work performed by the mean flow during stretching of hairpin 
vortices is a major source of turbulent energy production. 

In  this section, a model for hairpin vortices in homogeneous turbulent shear flows 
is presented and used to examine the instability of the hairpin structure. Two 
distinct instability mechanisms are considered for break-up of hairpins : (i) the three- 
dimensional Crow instability of a vortex pair (discussed in $2) and (ii) the essentially 
two-dimensional instability of Moore & Saffman (1971) for a vortex with elliptical 
cross-section which is subjected t o  a straining flow in the plane of vortex circulation. 
For this latter instability, the straining flow acting on one hairpin leg results from the 
flow field generated by the opposing hairpin leg. Extensions of this instability 
mechanism have been made by Kida (1981) for arbitrary core aspect ratio and strain 
rate and by Neu (1984) in the presence of axial stretching. Calculations by Moore & 
Saffman (1975a) (see also Pierrehumbert & Widnall 1981) indicate that a vortex pair 
will not become unstable under this mechanism until the cores of the vortices are 
nearly touching. After some consideration, it is argued in this section that the 
Moore-Saffman mechanism cannot play a role in the initial instability of hairpin 
vortices. Calculations using the result (24) of $2, on the other hand, yield very 
plausible predictions for growth of perturbations on hairpin legs based on the Crow 
mechanism. The effect of core deformation under a straining field on three- 
dimensional stability (as discussed by Moore & Saffman 19753; Robinson & Saffman 
1984 in the absence of axial stretching) is not considered in the present paper. 

We consider a hairpin vortex (for which the leg separation distance b is much less 
than the length L )  aligned a t  some angle 0 to the direction of a homogeneous mean 
shear flow W (see figure 4a) ,  where for a constant shearing rate S, 

w = Sye,. (32) 
Let s be a unit direction tangent to the axes of the vortex legs (which are taken to 

I1 FLM 211 
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d + L~ Inclined hairpin vortex - 
-- 

FIGURE 4. (a )  Schematic of the legs of a hairpin vortex aligned at 45' to a mean shear flow. ( b )  
Idealized model of the legs of a hairpin vortex for purposes of estimating the growth of three- 
dimensional perturbations of the hairpin legs. 

be nearly parallel) and let n be an outward unit normal to the plane on which the 
hairpin vortex lies. Then W can be written as 

w = w,n+w,s, (33)  

where w, and w, are the components of w in the n- and s-directions. If 0 is the angle 
between the vortex axes and the z-axis, then from (32)  and ( 3 3 ) ,  we have 

(34)  

At a height y, the induced velocity w L  on a hairpin leg from the opposing leg (in the 
absence of perturbations of the legs) is approximately 

w, = Sy sin (O), w, = S y  cos (0). 

where b = b(y). The estimate (35)  is not valid near the hairpin base (y = 0) or tip 

The condition for the angle of inclination 8 of the hairpin to be constant in time 
is that a reference frame translating with the vortex (but not rotating) exists in 
which the hairpin appears to undergo a purely stretching motion. It follows that the 
velocity of a point P on the hairpin axis can be decomposed into a uniform 
translation W in the 2-direction and a stretching velocity w* parallel to o, such that 

(y = L / d V  

w + w1 = w*s + We,. (36)  

Taking the scalar product of (36)  with n and then again with s and using (32)-(35) ,  
we obtain 

Sysin(0)-- r , -  - Wsin(0), Sycos(O)-w* = Wcos(0 ) .  (37a ,  b )  2nb 
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Note that the vortex translation speed W will always be less than the mean flow rate 
Sy  at  any y along the hairpin axis because the induced velocity from the opposite leg 
of the hairpin has a component which opposes the mean flow. There are three 
unknowns in (37) : b and w*, which depend on y, and W ,  which is a constant and is 
set by an initial condition on b.  We now set W = Sy,, where yo is some value of y 
slightly below the hairpin base. Solving (37) for leg separation length b and stretching 
rate w* gives 

l- 
' 0  

2xX(y- yo) sin (0) 
b =  

and w* = S(y- yo) cos (0). (39) 

Since the right-hand side of (38) is independent of time, we conclude that b must also 
be independent of time as the hairpin is stretched. Of course, this argument considers 
only induced velocity due to the legs of the hairpin and may not apply in the initial 
stages of hairpin growth. Evaluating (39) at  y-yo x L/2/2, where we assume that 
the hairpin is sufficiently stretched that the difference between yo and the location of 
the hairpin base is small compared to the hairpin length L, we can write 

dL. 
w*(y = ~ / 1 / 2 )  = - = ; 4 2 s ~  cos (8). 

dt (40) 

Integrating (38) gives the variation of hairpin length with time as 

L(t) = L, exp [+ 42St  cos (B ) ] ,  (41) 
where L, is the initial value of L. 

We now consider a rather simplified idealization of the legs of a hairpin vortex 
shown in figure 4 ( b ) ,  which is expected to be valid away from the base and tip 
regions. The idealization consists of a pair of nearly parallel vortices that are 
separated by a distance b (prior to perturbation of the vortices) and have circulations 
+G and core radii go. The vortices are confined between two parallel plates (placed 
normal to the vortex axes) that are separated by a distance L(t) and are pulled apart 
at a rate c3. The values of L,  b and go in the model are respectively identified with 
the length, median leg separation distance and core radius of a typical hairpin vortex 
in a turbulent shear flow. It is assumed that any perturbation in vortex separation 
distance must vanish at  the plates (i.e. a t  z = &$5 in figure 4 b ) ,  so that the 
perturbation wavenumber k is confined to the interval kmin < k < CO, where 
k,,,(t) = x / L ( t ) .  This model is constructed to be the simplest possible that allows 
analysis of instability of the hairpin legs. In particular, the model neglects variation 
of leg separation distance with height, which is probably reasonable for short- 
wavelength disturbances but questionable for disturbances with wavelength on the 
order of the hairpin length. The following analysis based on this model is intended 
only to demonstrate that the Crow instability is a viable mechanism leading to 
break-up of hairpin vortices in turbulent flows and that axial stretching exerts a 
strong effect on the instability for problems of this type. 

The four dimensionless parameters which control the stability of the vortex pair 
(6, p, 6 and CJC, in the notation of $2) are given for the model shown in figure 4 ( b )  

cJc3 = - 1 ,  /3=bkoexp(-c3t), E =b2c3 /&,  S =  ~S,a,k,exp(-&~t). 
(42 a d )  

The result (42a) follows from (10) and the observation made following (39) that b 

by 

14-2 
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must be constant in time, which implies from (11)  that c2 = 0. From (41), we conclude 
that the stretching rate c3 is given by 

c3 = t 4 2 s  cos (8) .  (43) 

P m i n  = (nb/LI)ex~ ( - c g t ) .  (44) 

Also, (41)-(43) imply that /3 must have a minimum value Pmin given by 

Before calculations for hairpin vortex stability can be made, it is necessary to  
obtain estimates for the constants b,  L,, gI and & that are appropriate for turbulent 
shear flows. In  this effort, attention is focused on homogeneous shear flows (in the 
mean) with microscale Reynolds numbers Re, between about 20 and 400, and the 
estimates which are formulated here are based largely on data from the numerical 
simulation of Rogers & Moin (1987, hereafter referred to  as RM), with some 
extrapolation to  higher values of Re,. The various arguments used to develop this 
scaling are numbered for convenience. 

(i) The equilibrium Burgers (1948) vortex solution is used to motivate a form for 
the initial core radius of the hairpin vortex as 

(TI = A,(V/S):. (45) 

From the data of RM, the constant A, is estimated to have a value between about 
5 and 10. 

(ii) An empirical result (RM, figure 23a) ,  which has been demonstrated in 
numerical simulations for Re, between about 20 and 150, gives the ratio of the typical 
leg separation distance b to the mixing length L,  = q3/eD (where &' is the turbulent 
kinetic energy and eD is the rate of turbulent dissipation per unit mass) as 

We recall that b is constant throughout the stretching of the hairpin vortex. 
(iii) The ratio Sq2/eD is found by RM to asymptotically approach a constant in 

homogeneous shear flows, the value of which seems to vary with Re,. From the 
available experimental and computational data (RM, table l ) ,  it seems that 
Sq2/sD x 1.1  Reg gives approximately the observed values of this ratio for Re, in 
the range under consideration. Recalling the definitions L,  = q3/sD and Re, = qh/v, 
as well as the usual estimate eD x 5vq2/h2 for the turbulent dissipation rate, we find 
that L,  can be written as L ,  = 0.5(v/S)tRea. (47) 
Combining (46) and (47) gives an expression for b as 

b = 3.2(v/S)iRei .  

(iv) It is noted by RM (p. 55)  that the ratio w,,,/S, where urmS is the root-mean- 
square vorticity, scales like Re, divided by Sq2/eD in homogeneous turbulent shear 
flows. From their data, the correlation seems to be approximately given by 
w,,,/S x 0.25Re,/(Sq2/eD). Assuming that the initial centreline vorticity wI of the 
hairpins is proportional to w,,, (e.g. wI x 3wrm,, following the comments on p. 45 
of RM) and using our previous asymptotic correlation for Sq2/eD,  we find that 
wI x A55Reft, where the constant A ,  is between about 0.6 and 1.0. The circulation & 
of the hairpins (which is constant with time) is then given by 

(49 ) & = xa: w,  = XA; A, vReft, 

where we have used the estimate (45) for uI. 



Three-dimensional stability of a vortex pair 415 

I 1 

0 100 200 300 400 
ReA 

FIGURE 5. Maximum value of the perturbation amplitude ratio A for turbulent hairpin vortices as 
a function of the microscale Reynolds number Re,,. The values shown are for the symmetric mode 
with 8, adjusted to give the maximum value of A .  

(v) The initial vortex length L, is needed in the stability analysis only to estimate 
Pmin. For this purpose, we simply assume that L, is approximately equal to the 
mixing length L,. (Since Pmin turns out to be smaller than the fastest growing value 
of P, this assumption does not affect our numerical results.) 

With use of the estimates (45)-(49), the four parameters listed in (42) that 
determine the hairpin stability can be approximated for a hairpin inclination angle 
19 of 45" as follows: 

c1/c3 = - 1, /3 = Po exp ( - m ) ,  8 = 0.04 Rei, S = Po Re,$exp (-*). (50) 

In writing (50), the coefficients A ,  and A ,  in (45) and (49) have been set equal to 7 
and 0.8, respectively. Also, using (45)-(49), Pmin can be approximated as 

Pmin = 19.8Re;;exp ( - 6 7 ) .  (51) 

u/b = 1.6Re;; exp ( - %7). 

We note that the ratio of core radius u to leg separation b is given by 

(52) 

For Re, > 20, the ratio u / b  is less than 0.5 for all initial times, and u / b  always 
decreases exponentially as 7 increases. Recalling that the cores either touch or 
overlap when u/b 2 0.5, we find that for Re, > 20 the cores will not touch for any r 
(except if they are brought together by an instability). These observations rule out 
the two-dimensional strained vortex instability mechanism of Moore & Saffman 
(1971) as a primary mechanism for hairpin vortex break-up. 

The solution of the system of equations (24) with b,S, 6 and CJC, given by (50) can 
be used to determine the change in the perturbation amplitude ratio A ,  defined by 
(29), as a function of dimensionless time 7 for different Re, and Po 2 Pmin, o.  The value 
of /lo which gives the greatest perturbation amplitude for a given value of Re, is 
denoted by Pf. For Re, between 20 and 400, Pf was found to vary between 3.0 and 1.7. 
In all runs with Po = Pf, the perturbation amplitude ratio A initially increased and 
then eventually approached a constant value as 7 + 00, in accord with the comments 
made following (31). The maximum value of A with Po = Pf, denoted by Amax, is 
plottcd in figure 5 as a function of Re,. Figure 5 shows a decrease in A,,, as Re, 
increases, which is in accord with the observation (e.g. Head & Bandyopadhyay 
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FIGURE 6. Amplitude ratio A of turbulent hairpin vortices as a function of vortex stretch L/L,  for 
values of the microscale Reynolds number Re, of 50 (-), 100 (----), 200 (--.--.-) and 400 
(- . .- . . - ). The values shown are for the symmetric mode with Po adjusted to give a maximum 
value for A .  

1 10 100 

L(OIL, 
FIQURE 7 .  Amplitude ratio of turbulent hairpin vortices a t  Re, = 70 and Po = 2.0 as a function of 
vortex stretch LIL,, as calculated both by including the effect of stretching (-) and by 
neglecting the stretching effect (----). The calculations are for the symmetric mode. 

1981) that the typical hairpin stretch increases with increasing Reynolds numbers. 
Of particular note is the rapid increase in A,,, as Re, is decreased below about 100. 
The results in figure 5 (and also figures 6 and 7)  are for the symmetric mode; 
antisymmetric disturbances do not grow significantly with time. 

The perturbation amplitude ratio A is plotted against vortex stretch L(t)/L, (again 
with Po = p,) in figure 6 for four values of Re,. At Re, = 50, A becomes fairly large 
(greater than 10) for a hairpin stretch of only about 15, whereas at Re,, = 400, A is 
never more than 6 no matter how much the hairpin is stretched. These results are 
significantly affected by the modifications made in $2 to the Crow instability due to 
the presence of vortex stretching. For instance, in figure 7 a comparison is made 
between the perturbation amplitude at Re, = 70 and Po = 2.0 as it is calculated with 
account taken for the effect of axial stretching (solid line), as discussed in $2, and 
without account being taken for this effect (dashed line). The latter curve is 
calculated by allowing stretching to change the wavenumber and core radius as 
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indicated in (49), but not including the effect of stretching in calculating the change 
in perturbation amplitude (i.e. by ncglccting the diagonal terms of the matrix A, in 
( 2 2 c ) ) .  Figure 7 clearly shows that axial stretching inhibits the growth of the 
perturbation. In  fact, as L(t ) /L ,  + 00, the prediction in figure 7 that was calculated 
without accounting for the stretching effect yields unbounded growth of the 
perturbation, whereas the prediction that includes the stretching effect yields a finite 
value of A of about 13 in this limit. 

The numerical values of the results presented in figures 5-7 are fairly sensitive to 
the value of the coefficient of 8 in (50), and hence to the values of the coefficients A ,  
and A ,  in (45) and (49). We have selected values for these coefficients which fall 
within the observed range and have obtained predictions from the stability theory 
that seem to be qualitatively in accord with observations of hairpins in turbulent 
shear flows. Variation of these coefficients within their indicated ranges will change 
the numerical values of our predictions but not our qualitative conclusions. 

The maximum perturbation amplitude of a hairpin vortex is obtained by 
multiplying the initial perturbation amplitude by the value of A,,, in figure 5 for the 
appropriate microscopic Reynolds number Re,. Any assessment of maximum hairpin 
stretch (as a function of Re,,) in a turbulent shear flow would have to first estimate 
the initial perturbation amplitude as a function of initial wavenumber. The initial 
perturbation of the hairpin may be due either to small-scale turbulence or to 
interactions between two hairpins or between a hairpin and other large vortical 
structures in the flow. 

Before closing this section, i t  is noted that the local-induction approximation 
(LIA) of Arms & Hama (1965) is of limited use for calculation of vortex structure 
evolution in turbulent flows. While calculations based on LIA seem to accurately 
portray the initial generation and evolution of hairpin vortices (e.g. Aref & Flinchem 
1984), LIA is not adequate for calculations of instability and break-up of hairpin 
vortices. I n  particular, since mutual induction between opposing legs of a vortex pair 
is neglected by LIA, calculations which make use of LIA do not exhibit the Crow 
instability. 

Some further comments regarding the interaction between the hairpin core 
vorticity and the ambient shear vorticity may also be appropriate. It is recalled that 
in a flow consisting of a streamwise vortex immersed in a shear flow directed along 
the vortex axis and with no stretching in the x-direction, the transverse shear 
vorticity and the streamwise vortex vorticity interact to  create an expulsion of 
vorticity from the inner regions of the vortex core (Pearson & Abernathy 1984; 
Moore 1985). This expulsion occurs on the timescale (vt); of viscous diffusion. 
Although this phenomenon may have some effect on streamwise vortices in turbulent 
shear layers, it is not believed to  significantly influence inclined hairpin vortices. In  
particular, we note that hairpin vortices are strongly stretched, which acts to  counter 
the viscous diffusion processes responsible for the vorticity expulsion. For example, 
the Burgers model of a stretched vortex (which has been used by a number of 
previous investigators as a model for hairpin legs) is initially dominated by vortex 
stretching and later reaches a final state where stretching and diffusion balance each 
other. Secondly, in hairpin vortices oriented at some angle 0 ( ~ 4 5 ' )  to  the direction 
of shear, a shear flow exists exterior to  the vortex core, but it is not oriented along 
the vortex axis. The axial flow interior to the vortex core is mainly due to stretching 
of the hairpin and is believed to be nearly axisymmetric about the core axis. Further 
justification for this viewpoint is provided by direct simulations of turbulent hairpin 
vortices (such as those of RM) which do not exhibit noticeable vorticity expulsion. 
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4. Conclusions 
The problem of the three-dimensional stability of a counter-rotating vortex pair is 

studied analytically. The problem is reduced to a pair of linear, first-order ordinary 
differential equations, which can be solved numerically using any standard forward- 
marching technique. The motion of the vortices (non-dimensionalized by the initial 
perturbation) is found to depend on four dimensionless constants ( E ,  c1/c3, So, Po), the 
dimensionless time 7 and the ratio of the initial values of the perturbations in the 5- 
and y-directions. It is found that for cases where the stretching rate in the L (axial) 
direction is greater than zero and where no stretching occurs in the x- or y-directions 
(so that cJc3 lies between - 1 and 0 ) ,  the perturbation amplitude may initially grow 
in time (sometimes reaching quite large values) but the perturbations always 
remain bounded at very large times. For cases in which CJC, lies in the interval 
- 1 < c1/c3 < 0, it is found that the perturbations approach zero a t  infinite time. 
When c , /c3  is equal to either - 1 or 0, the perturbations will asymptotically approach 
a constant amplitude a t  large times. 

The results of the study are applied to an idealized model of a hairpin vortex, 
which is commonly found in turbulent shear flows. Rough estimates for the various 
initial geometrical characteristics of the hairpin vortex model (such as leg length and 
separation distance, vortex circulation, core diameter and stretching rate) are 
obtained from a recent direct numerical simulation of homogeneous turbulent shear 
flow. The ratio of the perturbation amplitude at  the current time to the initial 
perturbation amplitude is found to be a function only of the microscale Reynolds 
number Re,, of the turbulent flow, the perturbation wavelength and the stretch of the 
hairpin vortex. In  general, this ratio decreases as Re,, increases, corresponding to the 
observation that the typical stretch of hairpin vortices in turbulent flows increases 
as Re,, increases. Stretching is found to exert a strong stabilizing influence on 
turbulent hairpin vortices. It is interesting to note, in fact, that in the absence of 
stretching, many of the hairpin vortices observed in experiments and numerical 
simulations of turbulent flows are unstable to three-dimensional disturbances and 
would quickly break up. 
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